
Migration of a droplet in a liquid: effect of insoluble surfactants  and thermal gradient

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2002 J. Phys.: Condens. Matter 14 4823

(http://iopscience.iop.org/0953-8984/14/19/309)

Download details:

IP Address: 171.66.16.104

The article was downloaded on 18/05/2010 at 06:39

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/14/19
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 14 (2002) 4823–4828 PII: S0953-8984(02)30222-4

Migration of a droplet in a liquid: effect of insoluble
surfactants and thermal gradient

Z Khattari, P Steffen and Th M Fischer

Max Planck Institut of Colloids and Interfaces, Am Mühlenberg 1, 14476 Golm, Germany

E-mail: thomas.fischer@mpikg-golm.mpg.de

Received 31 October 2001, in final form 25 April 2002
Published 2 May 2002
Online at stacks.iop.org/JPhysCM/14/4823

Abstract
The steady-state migration velocity of a spherical droplet placed in a
second liquid is calculated taking into account gravity and several interfacial
effects. The effect of insoluble surfactants at the bubble surface, surface
tension gradients, surface elasticity, interfacial dilatational viscosity, interfacial
diffusivity and convective and diffusive surface excess heat fluxes on the
terminal velocity of the droplet are included under the assumption of small
Marangoni, Reynolds and capillary numbers. This work extends earlier results,
which do not take into account interfacial diffusivity.

1. Introduction

Migration of droplets in a liquid can be stimulated by several mechanisms. One of them is the
application of external forces such as gravity, which gives the Rybczynski–Hadamard law [1,2].
Other ways are surface tension gradients, produced from thermal and solutal gradients or
electrical fields. They will introduce a tangential stress on the bubble’s surface, causing a
motion in the direction of decreasing interfacial tension, which is called Marangoni migration.
This case was first considered by Young et al [3] for bubbles of clean surfaces, i.e. vanishing
surface shear viscosity, dilatational viscosity and surface elasticity. They were concerned
with the motion of a gas bubble under the assumption of low Reynolds (Re = uaρ/η) and
Marangoni (Mg = ua/β) numbers, where u is the migration velocity, a is the radius of
the bubble, ρ the density, η the dynamical viscosity and β the temperature diffusivity of the
fluid outside the bubble. The low Reynolds number causes the validity of the equations of
creeping flow and a low Marangoni number indicates the negligibility of convective transport.
Under the assumption of low capillary number (Ca = uη/σ ), where σ denotes the surface
tension, the shape of the bubbles can be treated as spherical. Subramanian [4] has provided a
second-order perturbation expansion of the bubble velocity for small Marangoni numbers. In
this treatment the first-order correction to the terminal velocity vanishes. On the other hand
Bratukhin [5] has proved the same result in the case of small Reynolds numbers. Levich [6] has
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addressed the question of how the presence of soluble surfactants could affect this migration
velocity. The problem was treated by combining the hydrodynamic equations with the soluble
surfactant transport equations. Chen [7] has investigated the movement of a fluid sphere
within a constant applied temperature gradient in an arbitrary direction with respect to a rigid
plane surface. Transient migration of bubbles and steady-state flow for high Reynolds and
Marangoni numbers were considered experimentally by Treuner et al [8]. They compared
their experimental observation with that of the theoretical model for the terminal velocity of
the bubble. The main influence of high Marangoni numbers (i.e. convective transport) and
high Reynolds numbers (i.e. inertial effects) is to lower the terminal velocity.

Similar effects occur when considering the settling or rising of droplets due to gravity. Here
surface rheological effects in the low-Reynolds-number regime slow down the sedimentation
velocity from the value predicted by Rybczynski and Hadamard [1, 2], to the value of the
settling velocity of a solid surface as the importance of these effects increases. An overview
on this issue in a broad range of parameters can be found in [9]. Edwards et al [10] calculated
the effects of interfacial properties such as the dilatational viscosity, the Gibbs elasticity and
the adsorption parameter of soluble surfactants on the settling velocity.

The aim of the present work is to calculate the effect of the diffusivity and elasticity of
insoluble surfactants on the terminal velocity of a droplet placed in a combined gravitational
field and a temperature gradient.

2. Analysis

Consider a migration of an incompressible liquid spherical droplet of radius a surrounded
by an incompressible Newtonian liquid of temperature T , mass density ρ and viscosity η.
We assume that Reynolds and Marangoni numbers are small such that the Stokes equations
hold and heat conduction dominates convective heat transfer both in the droplet and in the
surrounding fluid [11]. The linearized equations describing the flow are

η∇2v = ∇(p + ρgz) (1)

∇ · v = 0 (2)

∇2T = 0 (3)

where v is the flow field velocity outside the droplet (r > a), p is the pressure and g is the
gravity acceleration in the negative z direction. Identical equations hold inside the droplet
(r < a; parameters are denoted by ∼). Owing to the axial symmetry of the problem the
solution for the velocity, pressure and temperature outside and within the spherical droplet
respectively reads [1, 2]

vr = u

(
1 − 2E

r3
− 2C

r

)
cos(ϑ) (4a)

vϑ = u

(
−1 − E

r3
+

C

r

)
sin(ϑ) (4b)

ṽr = −2u(A + Br2) cos(ϑ) (5a)

ṽϑ = 2u(A + 2Br2) sin(ϑ) (5b)

p = K − ρgr cos(ϑ) − 2ηu
C

r2
cos(ϑ) (6a)

p̃ = K̃ − ρ̃gr cos(ϑ) − 20η̃uBr cos(ϑ) (6b)
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T = T0 + T1

(
r +

k

r2

)
cos(ϑ) (7a)

T̃ = T0 + T1k̃r cos(ϑ) (7b)

where the constants A, B, C, E, K , k, k̃ and K̃ are to be determined from the boundary
conditions, u is the droplet velocity in the laboratory frame and T1 is the external temperature
gradient pointing in the positive z direction. Since all equations that follow are linearized
equations, this will justify choosing a solution which varies as simply as cos(ϑ), sin(ϑ), with
the angle ϑ .

First, the condition of continuity of the velocity fields across the droplet interface (i.e.
r = a) requires that vr(a) = ṽr (a) = 0, since there is no flow across the droplet interface.
Second, the continuity of the transverse components of the flow field across the droplet interface
requires vϑ(a) = ṽϑ (a). The rest of the boundary conditions are summarized in the following.
(a) The tangential stress boundary condition across the droplet interface
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− rη

∂

∂r

(
vϑ

r

)∣∣∣∣
r=a

= 1

a

∂σ

∂ϑ
+ ηs

(
2vϑ

a2

)
+

κs + ηs

a

∂

∂ϑ

1

a sin(ϑ)

∂

∂ϑ
(vϑ sin(ϑ)),

(8)

where κs is the interfacial dilatational viscosity, ηs is the interfacial shear viscosity and σ

the interfacial tension, which depends both on temperature T and molar surfactant surface
concentration �.
(b) The normal stress boundary condition across the droplet interface

p − p̃ + 2η̃
∂ṽr

∂r
− 2η

∂vr

∂r

∣∣∣∣
r=a

= −2σ

a
− 2κs

a2 sin(ϑ)

∂

∂ϑ
(vϑ sin(ϑ)). (9)

(c) In addition, we require that the temperature across the droplet boundary is continuous,

T (a) = T̃ (a) (10)

and (d) that the heat flux into the interface is transported away by convective and diffusive
surface currents,

h
∂T (a)

∂r
− h̃

∂T̃ (a)

∂r
= ∇s ·

[
−vcs

� + csurf

Ds

R
∇s

µs

T

]
(11)

where h (h̃) is the thermal conductivity outside (inside) the droplet, Ds the surface diffusion
constant, R the gas constant,

cs
� = T

∂σ

∂T

∣∣∣∣
�

, cs
surf = T �

∂2σ

∂T ∂�
(12)

are the total and the partial surfactant surface excess specific heat of the surfactant covered
surface and

µs = ∂σ

∂�

∣∣∣∣
T

(13)

the surface excess chemical potential of the surfactant. The terms on the left-hand side of
equation (11) are the heat fluxes from the bulk into the interface. The first term on the right-
hand side is the convective surface heat flux, first treated by Harper et al [12]. The last term is
a surface excess heat conduction mediated via the diffusion of the surfactant.
(e) The distribution of the insoluble surfactant density � on the droplet surface is determined by
the balance between advective transport due to the flow of the surface and the diffusive transport
caused by the gradient of the surfactant chemical potential and the temperature gradient at the
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interface. For a poorly soluble surfactant adsorption and desorption of surfactants competes
with surface diffusion. The surface transport equation of surfactants reads

∇s ·
[
v� − Ds�

R
∇s

µs

T

]
= α(�0 − �), (14)

where ∇s is the surface gradient, Ds is the surface diffusion coefficient, α the surfactant
adsorption parameter and �0 is the equilibrium surfactant density. For insoluble surfactants
for which RT αa2/Ds�(∂2σ/∂�2)T � 1 we may neglect any dissolution of the surfactant in
the bulk phases. The surfactant can be treated as insoluble, α = 0.
(f) The full solution of such a hydrodynamical problem requires a simultaneous determination
of the dependence of interfacial tension on surfactant surface concentration profile �(ϑ)

which couples via the surface tension σ(�; T ) with the equation of motion. Hence, the
surface equation of state, which poses an equilibrium relation between interfacial tension and
the interfacial density and temperature gradient on the droplet, is one of the ingredients to
complete the solution for this problem. The surface equation of state σ(�; T ) of insoluble
surfactants is neither linear in the concentration nor linear in temperature [13, 14]. However,
for small temperature and concentration gradients a∇s ln T � 1, a∇s ln � � 1 we might use
a linearized equation of state which reads

∂σ

∂ϑ
= ∂σ

∂T

∣∣∣∣
�0

∂T

∂ϑ
− E0

�0

∂�

∂ϑ
, (15)

where E0 = −�∂σ/∂�|�0 is the Gibbs elasticity of the surfactant. Following Levich’s classical
approach [6] and solving only linearized equations, which is justified under the assumption
that |�0 − �| � �0, we obtain from (12)

∂�

∂ϑ
= RT a

Ds(∂2σ/∂�2)T
vϑ − ∂2σ/∂�∂T − (∂σ/∂�)T /T

(∂2σ/∂�2)T

∂T

∂ϑ
. (16)

Solving the above set of equations for the terminal velocity of the droplet gives

u = −2

9
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1
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η
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and

Ds
eff = Ds �(∂2σ/∂�2)T

RT
cs
eff = T [(∂σ/∂T )� − �∂2σ/∂T ∂�]

(∂σ/∂T )eff = (∂σ/∂T )� +
(∂σ/∂�)T

(∂2σ/∂�2)T
[(∂σ/∂�)T /T − ∂2σ/∂T ∂�]

(19)

are an effective surface diffusion, an effectively transported surface specific heat and an
effective thermomechanical derivative of the surface tension with respect to temperature. Note
that we wrote equation (17) in vector notation (arbitrary orientation of the external temperature
gradient), although we derived it when aligned to the gravitational acceleration only. We are
allowed to do so, since the z component of (17) is a solution to a linear system of differential
equations and we might superimpose a solution with a temperature gradient in the x direction.

The above equation for the terminal velocity agrees with the calculations of Young et al if
the coefficients κ , E0 and cs

eff are set equal to zero. The major correction to Young’s result is
due to the presence of the surfactant elasticity and diffusivity. For a typical surfactant-covered
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gas bubble taking the values of µ̃/µ = 10−3, E0 = 10 mN m−1, Ds = 10−10 m2 s−1 and
a = 1 µm, the factor E0a/µDs

eff is the dominant one in 
. The presence of surfactants at
the interface tends to slow down the terminal velocity. A typical thermocapillary coefficient
ζ = u

∇T
= 1

2

a
µ

∂σ
∂T

is of the order of ζ ≈ 3 × 10−6 m2 s−1 K−1 for microbubbles with
clean surfaces, while for bubbles covered with insoluble surfactant ζ is reduced to the range of
ζ ≈ 3 × 10−11 m2 s−1 K−1. If no external temperature gradient is present and in the absence
of surfactant the result coincides with the result for the drag coefficient of Harper et al [12].

Note that the effect of surfactant is much more drastic for the thermocapillary motion of a
droplet than for the settling mobility. The reason for this lies in the location where the major
dissipation occurs during the motion. The surface rheological properties of the surfactant
solidify the bubble surface. The dissipation in the settling case is mainly due to dissipation
in the surrounding fluid as the elasticity of the surfactant increases: quite the contrary for
the thermocapillary motion. Since there the driving force are surface tension gradients, the
motion cannot be transferred to the droplet surroundings. The major dissipation remains at the
surface, leading to the drastic decrease in capillary motion. Experiments with laser tweezers
on surfactant-covered gas microbubbles in water indeed show that repulsive optical forces
surmount the attractive thermocapillary forces caused by local heating of the bubble with the
laser and it is not possible to capture bubbles with the tweezers. If one were able to produce
clean microbubbles the thermocapillary forces should overcome the repulsive optical forces
and one should be able to produce a thermocapillary trap.

3. Conclusion

The thermocapillary motion of a droplet covered with insoluble surfactant is calculated. The
terminal velocity is affected by the temperature gradient, surface elasticity, the interfacial
dilatational viscosity and surface diffusivity. For small gas bubbles the elasticity plays the
major role in affecting the terminal velocity of the gas bubble. In the case of small elasticity
in the absence of an external temperature gradient the terminal velocity is identical with the
result of Edwards et al [10]. If both interfacial elasticity and dilatational viscosity vanish, the
result of Young et al follows.
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